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We have obtained a closed-form solution for the sound radiation from multipole 
sources imbedded in an infinite cylindrical jet with an arbitrary velocity profile. 
It is valid in the limit where the wavelength is large compared with the jet radius. 
Simple formulae for the acoustic pressure field due to convected point sources 
are also obtained. The results show (in a simple way) how the mean flow affects the 
radiation pattern from the sources. For convected lateral quadrupoles it causes 
the exponent 'PL of the Doppler factor (1 - H cos O)-% multiplying the far-field 
pressure signal to be increased from the value of 3 used by Lighthill to 5. 

1. Introduction 
The study of the acoustic radiation from sound sources in a moving flow not 

only has its own intrinsic value but also has important applications to the under- 
standing of jet noise. For example, Lighthill (1952,1954) attributed the observed 
directivity pattern of the sound radiated from subsonic jets to the downstream 
beaming caused by motion of quadrupole sources through a stationary medium 
(frequently referred to as the source convection effect). Since then it has been 
pointedout anumber of times (Phillips 1960; Csanady 1966; Mani 1972; Goldstein 
& Howes 1973) that the mean flow field in the jet can significantly influence this 
convection effect. Csanady (1966) indicated that at sufficiently high frequencies 
the mean flow surrounding the source should cause the effect to disappear. 
Moreover it is now recognized that in the low frequency limit the surrounding 
flow will act to augment the convective amplification (Doppler) factor found by 
Lighthill (1952, 1954). Up to now results have been obtained only for the case 
of a slug-flow velocity profile (Slutsky & Tamagno 1961; Graham & Graham 
197 1 ; Mani 1972). The purpose of the present report is therefore to determine the 
effect of an arbitrary radial velocity profile on the low frequency (wavelength 
long compared with the transverse dimension of the jet) acoustic radiation due to 
multipole sources (monopole, dipole and quadrupole) embedded in an infinite 
cylindrical jet (see figure 1) .  

In this limit it is possible to obtain a relatively simple closed-form solution 
which shows that the mean flow does indeed influence the convection effect and 
that this influence can be described in a very simple way. It also shows that the 
far-field acoustic radiation from point monopole and axial dipole sources depends 
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FIGURE 1. Dimensionless co-ordinate system for jet flow. 

only on the local value of the mean Aow velocity while the radiation from lateral 
quadrupole sources is very strongly influenced by the local velocity gradient. 
The exponent n of the Doppler factor (1 - M cos O)-" multiplying the far-field 
pressure from this quadrupole is increased from the value of 3 used by Lighthill 
(1954) for sources moving through a medium at rest to 5. 

The present solution leads to an explanation for certain experimental observa- 
tions relating to low frequency jet noise. 

2. Analysis 
The linearized equations governing the propagation of sound in an axisym- 

metric transversely sheared mean flow (see figure 1) with mean density po and 
sound speed a. are (see Goldstein 1974, p. 10) 

az 
V2p-M2-+2poUsU'- DtP =ro 

0 7 2  

where Do/D7 = 8/87 + U 8/82, p is the pressure fluctuation, u,, is the radial com- 
ponent of the acoustic particle velocity and Us denotes a convenient reference 
value of the mean velocity U, U ( r )  in the axial (2) direction. All lengths have been 
made dimensionless using a characteristic radius ro of the jet, and the time T has 
been non-dimensionalized using V,/ro. The constant M = Us/ao is a characteristic 
Mach number of the mean flow. The prime denotes differentiation with respect 
to the dimensionless radial co-ordinate r .  We assume that the flow contains a 
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volume source of mass pop and an externally applied force per unit volume f .  
Then q can be thought of as the strength of an arbitrary volume-monopole source 
and f can be thought of as the strength of an arbitrary volume-dipole source.? 
We can introduce a volume-quadrupole source (of strength qj) by replacing fi by 

(3) 
where {yj) denotes dimensionless rectangular Cartesian co-ordinates and D now 
denotes the dipole strength. As is usual in the analysis of problems concerning 
sound propagation in sheared flows ur is eliminated between ( 1 )  and ( 2 )  to 
obtain the third-order wave equation1 

f i  = Di + r,-l aT,,/ayj, 

The variables Z and T can be eliminated from this equation in the usual way by 
introducing the two-dimensional Fourier transform 

to obtain 

where 0: = V2 - a2/aZ2 denotes the transverse part of the Laplace operator and 

We are interested in obtaining a low Erequency solution to this equation. Thus 
suppose that the source distributions f and q are such that their Fourier trans- 
forms vanish unless the dimensionless frequency (Strouhal number) 

K k/E. 

E = wro/U8 ( 7 )  

is close to zero and the wavenumber ratio K = k/e is of order one. In order to 
simplify the analysis assume that 

f = (0, 0,fA (8) 

has a component only in the axial (mean flow) direction. Then in the neighbour- 
hood of the jet where r is of order one (i.e. the inner region) we seek an expansion 

P = t: In ePC-1) + EP) + a(e)P(l) + . . . a(€) = O ( E )  
of the form 

t These definitions are, for purposes of comparison, taken to be consistent with those 
given in Morse & Ingard (1968, 3 11.2) for sources moving through a stationary medium. 

$ When Ti, is put equal to minus the turbulent Reynolds stress and q and D, are put equal 
to zero, (4) with fi given by (3) describes the noise generated by a turbulent flow. I n  fact, 
Goldstein & Howes (1973; see also Goldstein 1974, p. 394) showed that this equation can be 
obtained by combining Phillips' (1960) equation with the momentum equation after 
neglecting the products of acoustic quantities both with themselves and with the turbulent 
quantil ies. 
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to obtain in the limit as 6 + 0 with r held fixed 

If we expand the solution to the latter equation in the Fourier series 

00 

PCO) = Pg)( r )eW 
n = - m  

we find that the lowest Fourier coefficient is determined by 

and as a result 

Hence, assuming that the source distributions decay sufficiently rapidly with r 
as r+co, Pg) N b,+c,lnr, 

in which the omission of the limits on the second integral denotes an integration 
over all space and dy denotes a (three-dimensional) volume element. Upon 
explicitly introducing the quadrupole source through (3) this becomes after 
integration of the quadrupole term by parts 

where 

Similarly, if the source distributions vanish faster than any power of r as r + 00, it 
can be shown that 

This solution obviously breaks down at  large distances from the jet. 
In  order to determine the properties of the sound in the radiation field we must 

construct an outer expansion. To this end we proceed in the usual way by 
introducing the outer variable 

7 = er (12 )  

P 2 ) -  bn+c;rin as r+m, n +  0. (11 )  
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into (6) and expanding its solution for e+ 0 with? held fixed. If it is again assumed 
t,hat both the mean velocity field of the jet and the source distribution vanish 
sufficiently fast as r + 00, equation (6) will reduce to the ordinary wave equation? 

OqP+(iP-K2)P = 0, 

P = sF(O)(?, $6) +/3(€)P(1)(?) $6) + . . . /3(.) = O ( 6 )  

where vq is the Laplacian c2VZ; in the outer variables. Then the outer expansion is 

(13) 

and a t  least for the first few m the p ( m )  are determined by 

v 2 p ( m )  + ~ 2 f W  = 0, 

where K = ( 2 2  - K2)% (14) 

This equation will possess an outgoing-wave solution only if K is real, in which 
case the solution can be written as 

where Hc,l) denotes a Hankel function. 
The constants b,, c, and C, in the inner and outer expansions are determined 

by requiring the expansions to 'match' to the proper order in some intermediate 
region. This can be accomplished either by using the matching principle of 
Van Dyke (1964, p. 64) or by introducing intermediate variables and 
re-expanding in the overlap domain (Cole 1968, p. 234). In either case we find 
that 

Pc-1) = constant, 

Co=-+nico, C,=O, n = I f i l , + 2  ,.... 

Hence, it follows from (5), (lo),  (12) and (14)-(16) that to lowest order in E the 
pressure fluctuation in the outer region is given by 

p w " / m  Sm 6 exp { - i s { ~ [ Z  - Z,(T)] + [T + K Z ~ ( T ) ] } }  Hbl)(eKr) B(k, 6 )  dkds,  
(17) 

877 --m 

where 

and Z0(i-) has been added and subtracted in the exponent for future convenience. 
(If the source region is moving 2, can be thought of as the axial co-ordinate of this 
region at  some appropriate time; if the source region is stationary no generality 
is lost if 2, is set equal to zero.) When r is much larger than the wavelength we 
can replace Hi1) in (17) by its asymptotic expansion to obtain 

O0 exp { i € [ K ( Z  - 2,) - Kr]} 
sexp [ - i 6 ( ~ + ~ Z ~ ) ] . ~ ( k , e ) d k d s .  

(K44 

Upon introducing the polar co-ordinates 

R = {P + (2 - zo(T)]2}4, 8 = tan-l{r/[Z - Z,(T)]} 

t At least to any order of E which is of interest. 
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this can be written as 

m exp [ - i e R ( ~  cos 0 - K sin 0) - i e ~ Z  ] 
where I?(€) = 

But for eR 9 1 we can use the method of stationary phase (Erdklyi 1956, equa- 
tion ( 2 ) ,  $ 2 . 9 )  to obtain the following asymptotic expansion for l?: 

r(E) N [ iR ] Y ( - - E M C O S @ , ~ ) ~ ~ ~ [ ~ C ( Z , M C O S ~ + M R ) ]  as eR-+m. 

O B(E,€)dk .  1- K' 

2en sin (0) 6 

Hence 
m 

p N 
1 c exp { i e [ M R  - (7 - M Z ,  cos B ) ] )  Y( - EM cos 8 , ~ )  dc, (20 )  4nzR --m 

where 

This is the final formula for the acoustic pressure fluctuations in the radiation 
field due to monopole, dipole and quadrupole sources of strengthsp,q, D, and T3r 
respectively. In  order to understand its significance it is useful to consider the 
special case of point sources carried along at  the local velocity of the flow. 

Convected point sources 

Consider a harmonic point saurce with dimensionless frequency eo moving with 
a convection velocity U, (which may in general be different from the local jet 
velocity U(r,)U, a t  the dimensionless source radius r,). For convenience we 
take the normalizing velocity Us to be the source convection velocity V,. In 
order to emphasize this choice we shall write M, in place of M = U,/ao. Then 
the source strengths must be of the form 

For purposes of comparison we take Z0(7) to be the dimensionless position of the 
source a t  the emission time r0(7/U, - R/a,) of the sound wave which reaches the 
point (r,,r, 4, r,Z) a t  the time r07/U, (see figure 2 ) .  Thus 

2, = r-M,R. (23 )  
Then, inserting (22 )  into (21 )  shows that 

MC 
6 [ 1 -2$os0 

cos 0 QD - 2M;cos2w,] (24) 

B( -EM, cos 0, C) = - &(SO - E( 1 - M, cos 0)) 

+(1-%cos0)2 r,(i--cos0)3 

where Mj = V(r,) M, is the local jet Mach number at the radial location of the 
source and M i  = M, U'(r,) is the Mach number gradient at  the source location. 
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/ Source location at time of 
emission of sound wave 

FIGURE 2. Co-ordinate system for convected point source. 

Inserting this together with (23)  into (20) now shows that the pressure fluctua- 
tions at  sufficiently large values of the distance roR between the observation 
point and the source point a t  the time of emission are given by 

GOS (0) QD - 2M; cos2 (0) Qa] 
(1  -Mi cos 8)2 ro( 1 - 2Mj cos ~ 9 ) ~  Mcco/ro [ QM + * 47rri(r0R) (1  - &?, cos 6)2 1 - M j  cos 0 

xexp [ico(M,R-~)] .  (25) 

It is instructive to compare this result with the equivalent results for point 
monopoles and axial dipoles moving with a Mach number M, through a stationary 
medium which are given in Morse & Ingard (1968, § 11 .a). In  terms of the present 
notation they are, respectively, 

Notice that these formulae reduce to corresponding terms in (25 )  when 
Mj -+ 0 with M, held fixed. The latter equation shows that there is a contribu- 
tion (1 - M, cos O)-z to the Doppler factor due to source convection with the 
remaining contribution coming from the mean flow velocity. 

Now consider the case when M3 and H, are equal. Then these results show that 
the net effect of embedding a moving monopole source in a narrow region (relative 
to the wavelength) of moving flow is to change the exponent of its convection 
factor 1 - M cos 0 from - 2 to - 3 while the net effect on a dipole source is to 
change the exponent of its convection factor from - 2 to - 4. 
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Equation (25)  shows that not only is the acoustic power altered but the mean 
flow causes an additional beaming of the sound in the direction of motion with 
a dipole source being more strongly affected than a monopole. Moreover, this 
effect is substantially independent of the detailed shape of the velocity profile 
and depends only on the local velocity a t  the source. 

Although the definitions of the strengths of dipole and quadrupole sources are 
pretty standard, there is some variation in what is called the strength of a mono- 
pole source: in a stationary medium some authors consider aqlar rather than q to 
be the source strength.? Then for a moving medium the corresponding definition 
of the source strength would be D,q/Dr. It is not hard to show that in the latter 
case the convection factor remains unaltered with this new definition while in 
the former (stationary medium) case the exponent of the convection factor is 
reduced to - 1. Then the ratio of the pressure for a monopole source in a 
stationary medium to that in a moving medium will be the same as for the 
corresponding dipole sources. 

The results for the lateral (2, T) quadrupole source are even more remarkable. 
First, the convection factor for a point quadrupole source moving through a 
stationary medium (Lighthill 1952) is (1 - Mcos 8)-3. The present equations show 
that the effect of the mean flow on the convection factor is essentially the same 
as it is for a dipole source (is. it alters the exponent by 2). More important, 
however, they also show that there are at least some components of the 
quadrupole source which are proportional to the frequency q,. This is in contrast 
to the case of a stationary medium, when all components are proportional to e:. 
Thus in the limit of very low frequency the mean flow acts to keep the efficiency 
of certain components of the quadrupole source at the same level as that of a 
dipole source. I n  a stationary medium the quadrupole is always a much less 
efficient emitter of sound than the dipole at low frequencies. Although Lighthill 
(1954) originally used these words for an entirely different reason we may 
interpret this result as an indication that “the velocity gradient acts like a 
sounding board to increase the efficiency of the quadrupole radiation (to that 
of a dipole) ”. 

The proportionality to the Mach number gradient indicates that (at a fixed 
Strouhal number) this component of the quadrupole source will become progres- 
sively more important as the jet Mach number increases. Moreover, this propor- 
t.ionality also shows that this quadrupole source will not appear if the local 
velocity gradient is zero as it is for a top-hat velocity profile. However, it should 
be pointed out that the present analysis does not rule out the existence of other 
components of the quadrupole which do not have one of their axes aligned with 
the 2 direction. In fact an examination of the equations shows that it is highly 
likely that the longitudinal ( r ,  - T) quadrupole will also make a contribution.$ 

When we use the alternative definition of the monopole source strength given 

7 The source will then not correspond t o  a source of volume flow. 
$ I n  fact it is entirely possible that this quadrupole will also have its Doppler factor 

augnented by the mean flow. Indeed one of the reviewers has pointed out that Mani (1974) 
has shown that a quadrupole source in a plug-flow jet has the exponent of its Doppler factor 
augmented by 2. The present results would indicate that the source found by Mani ought 
to be a longitudinal quadrupole. 
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FIGURE 3. Directivity of 6 octave intensity for Usu,/Ui( 1 -Mcos6') = 0.03. 0, data from 
Lush (1971); -, Lighthill's directivity factor (l-Mc0s6')-~; ---, cos46'/(1 -Mcos6')9. 
Ui = jet velocity; U,/Ui = 0.65. 

above we can say that the present results show that for all the sources in (25) the 
mean flow always acts to introduce the additional Doppler factor (1 - M cos 0) -2  

multiplying the pressure. 

Implications for low frequency jet noise 

Lighthill (1952,1954) attributed the directivity of jet noise to the large exponent 
of the quadrupole convection factor. Since the pressure of a point quadrupole is 
proportional to (1 - M cos 0)-3 he deduced that the acoustic intensity should have 
a directivity factor of (1 - M cos 0)-'j. But Ffowcs Williams (1960) showed that 
owing to the effects of finite volume this directivity factor should actually be 
(1 - M cos ~9)-~. The present results show that the mean flow can increase the 
absolute magnitude of the exponentt of the pressure convection factor by 2. 
Hence the absolute magnitude of the exponent for the acoustic intensity can be 
increased by 4. 

Thus at  low frequencies there should be a lateral-quadrupole contribution to 
the jet noise which is proportional to 

C O S ~  (0) ]Mil2/(  1 - M cos 0)9. (26) 

Owing to the large exponent this term will tend to dominate near$ the 8 = 0 
axis and probably be swamped by the other components of the quadrupole a t  
0 = 90". This could account for the observed concentration of low frequency 
sound on the jet axis. Lush (1971) measured directivity patterns in Q octave bands 
for a subsonic jet. His data for the lowest frequency band are shown in figure 3. 
The solid curve shows Lighthill's directivity factor (as plotted by Lush). The 
dashed curves are plots of (26) with the level adjusted to  go through the last 
(0 = 15") point. Notice that the contribution from the dashed curve is more 

t One of the referees has indicated that this exponent has recently been found (although 
not explicitly pointed out) by Berman (1974). 

f It is not clear whether this result actually applies on the axis since the method of 
stationary phase (which was used to obtain the far-field pressures) is not necessarily 
uniformly valid in 6' and could break down at  this point. 
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important at  the higher Mach numbers. This is consistent with the lMjI2 factor 
which multiplies (26). 

Thus it is plausible that the alteration of the quadrupole source by the mean 
flow could account for the observed concentration of the low frequency sound on 
the jet axis. This explanation has certain similarities to  and differences from the 
one given by Ribner & MacGregor (1968). They argued that there is a self-noise 
term (turbulence/turbulence interaction) which is independent of direction and 
a shear-noise term (turbulencelmean-shear interaction) which is beamed down- 
stream owing to a factor cos2 0 which multiplies it. They further argued that the 
shear noise is of lower frequency than the self-noise, causing a net concentration 
of the low frequency sound on the axis. The present explanation is similar to 
theirs in that the quadrupole source (26 )  is multiplied by the mean shear in 
equation (25) for the pressure field and therefore is the result of an interaction 
between the shear and the sound sources (i.e. a shear-noise term). However, 
our explanation does not imply that the shear-noise spectrum has a lower 
characteristic frequency than the self-noise spectrum. It merely implies that the 
low frequency part of the noise is concentrated on the jet axis owing to a stronger 
Doppler factor. 
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